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Abstract

The vibration of spinning cylindrical shells are analyzed by using nine-node super-parametric finite element with
shear and axial deformation and rotatory inertia. The non-linear plant-shell theory for large deflection is used to handle
the cylindrical shell before it reaches equilibrium state by centrifugal force. Hamilton principle is used to present the
motion equation of finite element form. The effects of Coriolis acceleration, centrifugal force, initial tension and
geometric non-linearity due to large deformation are considered in this model. The effect of geometric non-linearity of
large deformation on the frequency of spinning cylindrical shells, the effect of boundary conditions on the frequency
parameter of spinning cylindrical shells and the effect of rotation speed on the different modes of spinning cylindrical
shells have been investigated in detail. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Spinning cylindrical shells are used in various industrial equipments such as gas turbines, locomotive
engines, high-speed centrifugal separators and rotor systems. Because the study on the vibration of spinning
cylindrical shells is essential to understanding of rotating structures, many researchers have been interested
in this topic.

The first recorded work on rotating cylindrical shells was by Bryan (1890), in which the phenomenon of
traveling modes was first discovered. Later work on rotating shells included the study of the Coriolis effect
on the free vibration by Taranto and Lesson (1964), by Srinivasan and Lauterbach (1971) for infinite long
rotating shells, and by Zohar and Aboudi (1973) for finite length rotating shells. Other work included the
study of long rotating cylinders subjected to pre-stress by Padovan (1973), the study of the effect of initial
tensions by Saito and Endo (1986), the study of rotating conical shell by Lam and Li (1997, 1999) and
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Sivadas (1995), the study of effects of boundary conditions on the frequency characteristics by Li and Lam
(1998), and the study of rotating composite cylinders by Padovan (1975), Rand and Stavsky (1991), Lam
and Loy (1994, 1995a,b), and Lee and Kim (1998). Endo et al. (1984) studied the flexural vibration of a thin
rotating cylindrical ring especially from the experimental point of view, and compared the experimental
results with theoretical results.

In the above studies on rotating cylindrical shells, much of the work was restricted to simply supported
boundary condition. A few studies involving other boundary conditions were Saito and Endo (1986), Rand
and Stavsky (1991), Penzes and Kraus (1972) and Lam and Li (1999). The studies involved clamped—
clamped (C-C) boundary condition, simply supported—clamped (S—C) condition and simply supported—
simply supported (S-S) condition. Only Rand and Stavsky (1991) studied the clamped—free condition, but
the effect of this boundary condition on the frequency characteristics of the rotating cylindrical shell was
not considered. None of them compared the frequency characteristics of rotating cylinders under the free—
free (F-F) boundary condition with that under other boundary conditions.

Most of the researchers used analytical method to study the vibration of rotating cylindrical shell. It is
difficult to solve the dynamic equation in general form by analytical method. For cylindrical shells and
circular plates the series form solutions can be found, but these are not convergent in general. For a cy-
lindrical shell the analytical solutions are valid only for some particular boundary conditions (Chen et al.,
1993). Some researchers (Saito and Endo, 1986) had to hypothesize the shape function of vibration, and
some assumptions had to be adopted, for example, pure bending assumption, small deformation as-
sumption and so on (Endo et al., 1984). Lam and Li (1999) used trial function to solve the analytical
equation, but sometimes the trial function can only satisfy the geometric boundary conditions and the
improvement of numerical accuracy is difficult. So other methods had to be found to solve this problem (Li
and Lam, 1998). However, the numerical solutions can be obtained by finite element methods in the general
case and without imposing any restriction on the mode shapes. Of the document we have read, only a few
studies were on the vibration of rotating cylindrical shells by finite element method. These include Padovan
(1975), Chen et al. (1993), Sivadas and Ganesan (1994) and Sivadas (1995). Padovan (1975) developed a
quasi-analytical finite element to study the traveling wave vibrations of rotating shell. The effects of Coriolis
forces and centrifugal forces had been considered, but the influence of initial hoop tension due to the
centrifugal force had been overlooked in the analysis of the fundamental equation. Sivadas (1995) studied
the vibration of pre-stressed rotating thick circular shell by finite element method, and the shear defor-
mation and rotatory inertia had been considered in his model. Because the axisymmetric finite element was
used, some vibrational mode such as torsion mode and beam bending mode cannot be obtained. Chen et al.
(1993) used the finite element method to solve the rotating cylindrical shell with high speed, and he con-
sidered the large deformation. In four papers mentioned above, no attempt was made to study the effect of
non-linearity of large deformation due to centrifugal force on the frequency characteristics of rotating
circular shells, and the effect of rotation on the displacement distribution of different mode has not been
studied too.

As we know, the initial deformation due to centrifugal force is different under the different boundary
conditions. For example, the initial deformation of rotating cylindrical shell under the clamped—free
boundary condition is different from that under F—F boundary condition. Some researchers (Sivadas, 1995)
concluded that the boundary conditions do not have any effect on the frequency parameter. But others
concluded that the boundary conditions have effects on the frequency characteristics of rotating cylinders
(Lam and Li, 1999). The contradictory conclusions prompted the present authors to investigate the vi-
bration of spinning cylinders under different boundary conditions. A nine-node superparametric finite el-
ement is used. This paper has deduced the finite element form of spinning cylindrical shells. The non-linear
plant-shell theory for large deflection is used to handle the cylindrical shell before it reaches the equilibrium
state by centrifugal force, and then a linear approximation is employed. Not only the effect of Coriolis
acceleration, centrifugal force and initial tension, but also the non-linearity due to large deformation is
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considered in this model. The frequency characteristics of spinning cylinders with, respectively, the
clamped—free boundary condition and F-F boundary condition are studied. The effects of non-linearity of
large deformation on the normalized frequency of spinning cylindrical shells and the effects of rotation on
different modes are studied. To examine the accuracy of the present analysis, comparisons are made against
the results in the open literature for non-rotating and rotating cylindrical shells.

2. Theoretical formulation

The nine-node curvilinear finite element method is used in this paper (Fig. 1). The following assumptions
are made:

e ‘Normal line’ to the middle surface remain straight after deformation.
e The stress component normal to the shell mid-surface is constrained to be zero.

Each node point has five degrees of freedom: u, v and w are three displacement components; o and f§ are two
rotational angles in 7, and V, directions. The detailed form of element description and derivation of the
element stiffness matrix are available in the literature (Hinton and Owen, 1984). Only a brief introduction of
finite element formulation for free vibration analysis is presented in the following.

The coordinates of a point within the element are obtained by applying the element shape functions to
the nodal coordinates,

X n Xk n l’l

= S w2

y = > NS Wi + > Ny 3 Vi (1)
z k=1 Zk midsurface k=1

where 7 is the number of node per element; N, = N;(&, %) (k = 1,n) are the element shape functions cor-
responding to the surface ¢ = constant; %; is the shell thickness at node k; &, n, ¢ are the curvilinear co-
ordinates of the point.

The element displacements can be expressed by

u n 1273 n h

— — 4
v o= ZNk Uk + ZNkCTk (Ve — V] {ﬂk] 2)
w k=l Wi midsurface k=1 g

The expression of Eq. (2) can be simply written as

Fig. 1. Nine-node curvilinear finite element.
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0=X v Y =Na (3)
where
ay U
5] Ui
a=+< . p, a=<Lw (i=12,...,9) 4)
: %
@ B;
N is the shape function matrix of the nine-node superparametric shell element N = []71 oo N oo ]m,
where
Nk 0 0 ng%kl_/;k _NkQ%VJZk
Ne=|0 Ny 0 Nc%7), —NecZ7, | (k=1,9) (5)

0 0 Nk NkC%VZM —N;@%szk

According to the perturbation theory, we assume that the cylindrical shell’s vibration is small around the
equilibrium position. The non-linear plant-shell theory for large deflection is used to handle the cylindrical
shell before it reaches the equilibrium state by centrifugal forces. The strain—displacement relation in local
co-coordinate x, y, z is

2 2 2
0 1| (%u el ow
o H@®)+(2)+ ()]
o & L (a)? o) o)
dy L[ ou ol w
&y . }a 2 (w) Jr(ay) Jr(ay)
e = 1 = du @ —F =
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Vyz o 4 vz T oy
=T o Qudu 4
0z Ox 0z Ox
where the non-linear strain component is
%, = 1SR (7)
and
(HT 0 0
0 Hf 0
_ T T
S=|H, H 0 (8)
T T
0 Hy H,
L7y 0 HY
FH
R=|H, | =Ta 9)
L H3

where
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Differential representation of Eq. (7) is:
dz, = 1dSR+1SdR = STda = B, da
The matrix of strain—displacement relationship is taken in the form

B=B,+B,

The elements of the matrix B are not constant for non-linear shells with large deformation.

From Egs. (12), (13) and (6), we can obtain

B, =S8T
The tangential stiffness matrix in geometric non-linear problem has the expression
Kda = [Ky + K,]da = dP = /BTdEdV + / dB"GdV
14 14
because
7 = De = DBa
We have

Ky = /BTDBdV
|4

K,,da:/dBTadV:/dBjadV
14 Vv
Substituting Eq. (14) into Eq. (18) gives
K,da = / 77ds g dy
14

From Egs. (8) and (9), we have
ds's = [0]T da
where

O Tl T d
o= |t o, 1.1
(7 S A B |

Substituting Eq. (20) into Eq. (19), we can obtain

729

(10)

(11)
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K, = / TV e]TdV (22)
14

We assume that the cylindrical shell’s vibration is small around the new equilibrium position. The shell is
assumed to be rotating at constant angular velocity Q about its center axis which get across a reference
point O. A location vector 7, can be defined from point Q of the shell to the fixed reference point O, the
corresponding elasticity deformation vector is &(ro, #), the velocity vector of deformation is 6, and the total
displacement of the point Q is

F=Fy+0 (23)
The corresponding velocity is
T=0x7+0 (24)
where
ox 3 u _ Q,
Ty = Foy ¢ o= 1% 5 Q= Qy , (25)
70- w Q.

Q,, , and Q. are the components of Q in global coordinate x, y and z respectively.
The kinetic energy of this point is

AT =1Am - (@ x ) x (@ x7) + Am- (@ x 7) - 6 +1Ams - 3 (26)
For the whole element the kinetic energy can be written as the following expression
1 T 25T L STToS L A ToTS L -ToTOS
T=3 (5 3+20Q5+0 Q705 + 2710 5+2r0QQ5)dm (27)
Vv
where
0 -Q Q
Q=1 Q, 0 —-Q (28)
-9, 2 0
By substituting Eq. (3) into Eq. (27), we obtain
T=1a"Ma+1aGa+a'K.a+a"1+a'4+d"Ja (29)
where
M= /NTNdm, G=2 / NTQNdm, K.= /NTQTQNdm (30)
Vv v JV

K. is the matrix due to the rotation of a particular element and G is the matrix due to Coriolis acceleration.
The expressions of I, 4 and J will not be written in this paper because they do not appear in the motion
equation.

The elemental potential energy is

Vv =1a'Ka (31)

From Eqgs. (29) and (31), using Halmilton’s principle, the perturbation motion equation of the shell about
its equilibrium position is obtained

Ma+Ga+ (K—-K.)a=0 (32)
where K = [Kj + K] can be obtained from Egs. (17) and (22).
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3. Results and discussion

In this paper, the R, L and & are respectively the mean radius, length and thickness of the cylindrical shell.
E, pand p are respectively the elastic modula, Poisson’s ratio and mass density of material, and » and m are
respectively half the number of the circumferential node and the number of the longitudinal node.

In order to verify the program and the present method, two comparisons with the results in the open
literature are made in Tables 1 and 2.

The first, as shown in Table 1, involves the free vibration of a non-rotating cylindrical shell with
clamped—free boundary condition. The dimension and material properties of the cylindrical shell is same as
that of reference (Chung, 1981). A comparison between the present results and the results of Chung (1981)
is made in Table 1. For a pure numerical approach, the scheme of the discretization meshing has influence
on calculation results. From Table 1, it can be seen that for a given m and n, if the circumferential element
number is greater than three times n and the longitudinal element number is greater than two times m, the
percent error between the present result and the analytical result of Chung (1981) is less than 5%.

The second, as shown in Table 2, involves the free vibration of a long spinning cylindrical shell and
makes a comparison between the present result and the result from the equation of Endo et al. (1984), it can
be observed that very good agreement is achieved.

The shells discussed in the following are thin cylindrical shells rotating about the center axis (Fig. 2). The
geometric properties and material properties are:

Table 1
Comparison of natural frequency for a non-rotating cylindrical shell with clamped—free boundary condition

n m Chung* (Hz) Present (12 x 6)° Present (16 x 8) Present (20 x 3) Present (20 x 10)
(Hz) (Hz) (Hz) (Hz)

1 1 855.10 855.83(0.08%)° 855.83(0.08%) 855.77(0.08%) 855.83(0.08%)

2 1 403.72 405.39(0.40%) 404.60(0.20%) 404.35(1.6%) 404.34(0.15%)

3 1 223.34 227.15(1.7%) 224.73(0.6%) 224.14(0.36%) 223.95(0.27%)

4 1 171.77 179.29(4.4%) 173.80(1.2%) 172.47(0.41%) 172.09(0.19%)

5 1 199.16 218.37(9.6%) 204.13(2.5%) 200.37(0.61%) 199.93(0.39%)

6 1 268.86 319.01(19%) 284.06(5.4%) 273.66(1.8%) 273.20(1.6%)

7 1 361.92 503.79(39%) 402.21(11%) 376.55(4.0%) 376.00(3.9%)

8 1 472.54 824.30(74%) 565.51(20%) 508.14(7.5%) 507.43(7.4%)

1 2 2318.98 2320.99(0.09%) 2320.79(0.09%) - 2320.63(0.07%)

2 2 1437.11 1436.11(—0.07%) 1440.01(0.2%) 1446.94(0.68%) 1439.11(1.4%)

3 2 928.28 920.82(—0.8%) 934.60(0.7%) 938.23(1.1%) 931.82(0.4%)

4 2 644.48 635.01(—1.5%) 656.49(1.9%) 655.51(1.7%) 650.51(0.94%)

5 2 494.69 490.30(—0.9%) 514.28(4.0%) 507.25(2.5%) 503.69(1.8%)

6 2 442.00 638.66(44%) 473.10(7.0%) 457.22(3.4%) 455.09(3%)

7 2 464.59 715.07(54%) 518.47(12%) 487.20(5%) 486.24(4.7%)

8 2 539.45 - 618.16(15%) 580.53(7.6%) 580.38(7.6%)

1 3 3076.05 3078.40(0.08%) 3078.84(0.08%) - -

2 3 2487.60 - 2493.12(0.2%) - 2491.37(0.15%)

3 3 1834.82 - 1841.93(0.4%) - 1842.31(0.41%)

4 3 1367.64 - 1377.10(0.7%) 1450.45(6%) 1380.86(1%)

5 3 1057.12 - 1072.73(1.5%) 1140.61(8%) 1078.27(2%)

6 3 864.82 1053.40(21.8%) 890.22(3%) 950.64(10%) 895.92(3.6%)

7 3 767.65 - 801.95(4.5%) 858.47(12%) 811.74(5.7%)

8 3 750.67 - 676.03(10%) 853.25(13.67%) 814.78(8.5%)

#The result of Chung (1981).

°The circumferential element number is 12 and the longitudinal element number is 6.
“The percent error between the present result and the result of Chung (1981) is 0.08%.
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Table 2
Comparison of frequencies for a long spinning cylindrical shell (m =1, u=0.3, E=2.07 x 10" N/m?, p =7.86 x 10° kg/m?,
h/R = 0.002)

Q (rev.p.s) n Endo et al.? Present result
Jo (Hz) Jir (Hz) Jo (Hz) Ji (Hz)
0.5 2 6.0974 6.8974 6.0545 6.9314
3 4.6508 5.2508 4.5905 5.2521
4 7.5014 7.9719 7.4396 7.9643
5 12.5790 12.9641 12.5251 12.9634
1.0 2 5.7799 7.3799 5.7142 7.4675
3 4.7694 5.9694 4.7194 6.0421
4 7.8480 8.7891 7.7829 8.8791
5 12.9975 13.7667 13.0234 13.8973

#From the equation of Endo et al. (1984)

202 1\2 1/2
=2 -1 o
Wr = <nz+l wy (l + (+1)* @y @o

2,212 1/2
_ o Q e -1)" 9
@b = <"2+1 2l + (1 + (241> @ ®o

where w; and wy, are respectively the forward wave frequency and backward wave frequency of the shell spinning at a speed Q, w, is the

frequency of the shell when Q = 0.

Fig. 2. Geometry of a thin spinning cylindrical shell.

L=0.5m, R=0.5m, h=0.02m
E =207 x 10" N/m?, v=20.3, p =7.86 x 10° kg/m’

The boundary conditions are F—F boundary condition and free—clamped (F-C) boundary condition. The
scheme of discretization mesh adopted in this paper is that 30 elements were divided on circumference and
five elements on length. So the whole finite element number is 30 times 5.

The first study of this paper is to investigate the effect of non-linearity of large deformation on
the frequency of the spinning cylindrical shells. From Eq. (13), it is observed that the matrix of
strain—displacement relationship B is not constant for a large deformation non-linear shell, B consists of
two parts, the matrix B;, which does not change with the deformation of shells, and the matrix B,, which
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Fig. 3. Natural frequency at different modes of vibration as a function of the rotating speed for a F—C spinning cylindrical shell.
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- --- B is not neglected,n=3,m=0 Phd
O B, is neglected,n=3,m=0
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Frequency,Hz

1 1
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Rotating speed,Hz

Fig. 4. Natural frequency at different modes of vibration as a function of the rotating speed for a F-F spinning cylindrical shell.

varies with the change of deformation. B, is often omitted if the deflection of the shell is small. Figs. 36
illustrate the influence of B, on the frequency of the spinning cylindrical shells with different rotating speeds
and boundary conditions. Fig. 3 shows the variation of the natural frequency of a F—C cylindrical shell with
the rotational speed for the B, neglected and not neglected, and Fig. 4 shows that for F-F boundary
condition. The trends of all curves are the same as in literatures (Saito and Endo, 1984; Sivadas, 1995; Li
and Lam, 1998). For one rotating speed, the backward wave frequency and the forward wave frequency are
present, and they increase monotonically with the rotational speed if n > 2. It is observed from Fig. 3 that
there is very little difference between the natural frequencies for B, neglected and that for B, not neglected
at low rotational speed. However, this difference increases when the rotational speed increases. The curves
of frequency for B, not neglected always lie below that for B, neglected. But from Fig. 4, it is found that the
B, does not have any obvious influence on the frequencies at all rotational speed range. The variations of
the frequency errors for the B, neglected and not neglected with the rotational speed are shown in Fig. 5.
The errors increase obviously with the rotating speed for F—C boundary condition, and the effects of B,
on the frequencies of forward wave and backward wave are different. The effect on backward wave
frequency is larger than that on forward wave when spinning at high speed. But for F-F boundary
condition, the errors have little change with the rotating speed, and the effects of B, on the frequencies of
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Frequency error,Hz
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Rotating speed,Hz

Fig. 5. Frequency error between the case of omitting B, and not omitting B, at different boundary conditions as a function of the
rotating speed.

3200+ Forward wave,B, is not neglected
- - - - Forward wave,B, is neglected 8
—O— Backward wave,B, is not neglected
—e— Backward wave,B, is neglected . g
2400
z
=
g
1600
=

800

Fig. 6. Natural frequency as a function of circumferential wave number n for a F-C spinning cylindrical shell (m = 1).

forward wave and backward wave are not found different. It is known that for a spinning cylindrical shell
there is different initial deformation due to centrifugal force for different boundary conditions. For F-F
boundary condition, the initial displacement is almost homogeneous along the length of the cylindrical
shell. But for F—C boundary condition, the initial displacement is not homogeneous. It results in the dif-
ferent effect of B, on the frequency of the spinning cylindrical shell for different boundary conditions. Fig. 6
illustrates the effect of B, on the frequencies of an F-C cylindrical shell spinning at Q = 500 Hz. It shows
that the frequency of n = 2 are the lowest in every curve. The frequencies for B, neglected are larger than
those for B, not neglected. From Eqgs. (8)—(14), it can be obtained that B, is a non-linear function of node’s
displacement. The iteration method must be adopted to obtain the values of B, for one node’s displace-
ment. This process wastes most of the computer time. For example, using Pentium III 750 computer, it
takes 11 min and 6 s to calculate the M, G and K. of the F-C cylindrical shell spinning at Q = 500 Hz for B,
not neglected, while it only takes 1 min and 50 s for B, neglected. From Figs. 3-6, it is concluded that the
effect of B, on the frequencies of an F-C cylindrical shell spinning at high speed cannot be neglected. But
for F-F spinning cylindrical shells or F-C cylindrical shells with low rotating speed, the effects of B, can be

neglected, which is obtained by omitting the B, term in Eq. (13), so the computer time can be reduced
much.
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The second study of this paper is to investigate the effect of boundary conditions on the frequency pa-
rameter of the spinning cylindrical shells. For ease of comparison and discussion, a normalized frequency
o* = w/wy and normalized rotating speed Q" = Q/w, are used. The results are shown in Figs. 7-10. The
relationship between the frequency of stationary cylindrical shells with different boundary conditions and
the circumferential wave number # is shown in Fig. 7 for different longitudinal node number m. As shown in
the figure, the F—C cylindrical shell has the higher frequency than F-F shell for the same m. Although the
frequency of the cylindrical shell with the same m does not monotonically increase with the circumferential
wave number 7, for the same n, the frequency with larger m is higher than that for smaller one. When the
cylindrical shell is spinning at Q = 100 Hz, the relationship between the frequency with different boundary
conditions and the circumferential number » is shown in Fig. 8 for m = 0. From this figure, it is seen that
the difference between the frequencies of F-F and F-C boundary conditions is large for the small cir-
cumferential wave number n, while it is relatively small for the large n. This conclusion is the same as that in
the literature (Li and Lam, 1998), which studied the effects of S—-C, C—C and S-S boundary conditions. Figs.
9 and 10 show the variation of the normalized frequency w* with normalized rotating speed Q* for F-F
boundary condition and F-C boundary condition, respectively, and forn =2, m=0and n =3, m =0. In

2000}
1500}
8
& F-Fm=0
% 1000} —m— F-Fm=1
£ —o— F-Em=2
- F-Cm=0
--m--F-C,m=1
500} - -0- - F-C;m=2
o n n 1 n 1 n
0 10 1 12

Fig. 7. The relationship between the frequency of cylindrical shells with different boundary conditions and the circumferential number
n for different longitudinal wave number m at Q = 0.

2000
- - - - F-FForward wave,m=0
F-F,Backward wave,m=0 4
- -m- - F-C,Forward wave,m=0 4
1500 -

—m— F-C,Backward wave,m=0

Frequency,Hz
=)
S
S
T

500 -

Fig. 8. The relationship between the frequency of the spinning cylindrical shell with different boundary conditions and the circum-
ferential number »n for m = 0, Q = 100 Hz.
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3

N

Normalized frequency ®*

.\
.\
—
———n

0 n 1 n 1 n 1 n
0.00 0.25 050 0.75 1.00

Normalized 'rotating speed )

Fig. 9. The relationship between the normalized frequency of shells with different boundary conditions and the rotating speed for
n=2m=0.

5
F-F,n=3,m=0
—m— F-C,n=3,m=0
4L
g .
: -~
g .
=]
R
z
(L
0 1 1
0.0 0.5 1.0 1.5

normalized rotating speed Q'

Fig. 10. The relationship between the normalized frequency of shells with different boundary conditions and the rotating speed for
n=3m=0.

both figures, the w* for two waves of F-C lies below that of F-F, and the difference between the backward
wave frequency of F-F and that of F-C is larger than that for forward wave. It shows that the deviation
between the w* of F-C shell and F-F shell for n» = 2 is larger than that for » = 3 from Figs. 9 and 10.

The third study of this paper is to investigate the effect of the rotational speed on the mode of the F-F
cylindrical shell. Three kinds of modes studied are shown in Fig. 11(a)-(c). The circumferential wave
number of all three kinds of modes is 2, and the longitudinal node number is 0, 1 and 2, respectively. For
ease of comparison and discussion, the mean percent ratio of displacement distribution corresponding to
radial, tangential and longitudinal directions is defined as u, u;, u, respectively, and

=rtz (33)

where k is the whole number of finite element nodes of the cylindrical shell. u; is the displacement of node i
corresponding to j direction. Table 3 shows the mean percent ratio of displacement distribution of three



D. Guo et al. | International Journal of Solids and Structures 39 (2002) 725-739

(a) n=2, m=0

()n=2, m=2

737

Fig. 11. Three kinds of modes of the F-F rotating cylindrical shell at Q = 50 Hz.

Table 3
The mean percent ratio of displacement distribution of three modes of a F-F thin cylindrical shell at Q2 =0 Hz
Mode ut u; u’
n=2,m=0 67 34 0
n=2,m=1 44 22 34
n=2m=2 88 9 3
1.6
n=2,m=0
- --- n=2,m=1
% 14 —a—n=2,m=2
> .
E{ s
E 121 _____,—"
S .- : ./.
2 T
1.0 — . e
08 1 " 1
0.0 0.1 0.2 0.3

Normalized rotating speed Q*

Fig. 12. The relationship between the normalized frequency and rotating speed for the F-F spinning cylindrical shell, and for different
modes.

modes of a stationary thin cylindrical shell with F-F boundary condition. From Table 3, it is shown that
the percent ratio of displacement for different modes is different. Fig. 12 shows the variation of the nor-
malized frequency w* with normalized rotating speed Q* for F-F boundary condition, and for n = 2 and
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m=0,n=2and m =1, n =2 and m = 2, respectively. In the figure, the curves of w* for n =2, m =0 lie
out of other modes’ curves, followed similarly by the modes of n = 2, m = 1 and n = 2, m = 2. For studying
the effects of rotating speed on the mean percent ratios of displacement distribution u}, u, u’ for different
modes, we calculate the v, u’, u} for mode n =2, m=0,n=2, m=1 and n =2, m =2 as the rotating
speed varies from 0 to 300 Hz. The results show that the rotation has no obvious effect on the percent ratios
of displacement distribution. So it is concluded that the rotation has different effect on the frequency of

different modes, but has no obvious effect on the displacement distribution ratio of different modes.

4. Conclusions

Spinning cylindrical shells have been analyzed by using nine-node superparametric finite element
method. The finite element form of the spinning cylindrical shell has been deduced. The shear and axial
deformation and rotatory inertia have been considered in the finite element model. The effects of Coriolis
acceleration, centrifugal force, initial tension and geometric non-linearity due to large deformation have
been included in the physical model. The non-linear plant-shell theory for large deflection is used to handle
the cylindrical shell before it reaches the equilibrium state by centrifugal force, and then a linear approx-
imation is applied.

The effects of non-linearity of large deformation on the frequency of spinning cylindrical shells, the effects
of boundary conditions on the frequency parameter of the spinning cylindrical shells and the effects of
rotation speed on the different modes of a F-F cylindrical shell have been investigated. Based on the
analysis, the conclusions can be drawn as follows:

1. The effect of non-linear strain—displacement relationship matrix B, due to large deformation on the fre-
quencies of F—C cylindrical shells rotating at high speed is obvious. But for F-F spinning cylindrical
shells or F—C cylindrical shells with low rotating speed, this effect can be neglected.

2. The difference between the frequencies of F-F and F—C spinning cylindrical shells is large for the small
circumferential wave number #, while it is relatively very small for the large n.

3. At one normalized rotating speed Q*, the normalized frequency w* for F-C cylindrical shells is smaller
than that for F-F cylindrical shells. The difference between the normalized frequencies of F-F and F-C
cylindrical shells for the backward wave is larger than that for the forward wave.

4. For the same n, the backward normalized frequency w* of F-F cylindrical shell is larger at a small m
than at a big m, but the forward normalized frequency is reverse.

5. The rotation has different effect on the frequency of different modes, but has no obvious effect on the
displacement distribution ratio of different modes.
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